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Isodomoic acid C11 is a member of a 10-strong family2 of
isomers of domoic acid2,3 all of which are cyclic kainoid amino
acids4 isolable from the marine organismsNitzschia pungensand
Chondria armata. Domoic acid has powerful neuroexcitatory
properties,5 and isodomoic acids are insecticidal.1 Domoic acid and
the isodomoic acids have, on occasion, been found in the edible
parts of the mussel,Mytilus edulis,2d posing a threat to both humans
and marine mammals and birds.6 The syndrome known as amnesic
shellfish poisoning has been ascribed to ingestion of shellfish con-
taining domoic and isodomoic acids,7 and there have been numerous
recent developments in methods for analysis of domoic acid.8

Domoic acid has been synthesized on one occasion,3b and only
one of the family of isodomoic acids, isodomoic acid G, has so far
been made,9 though domoic acid has been isomerized photochemi-
cally to a mixture of the isodomoic acids;2b moreover, Baldwin10

has successfully synthesized a series of non-natural domoic acid
analogues.11 In this paper, we describe the first total synthesis of
(-)-isodomoic acid C1 in 15 steps from a simple aromatic amide
5. The key step in our strategy is the asymmetric dearomatizing
cyclization of thisN-benzyl benzamide5,12 a reaction we have
employed in the synthesis of the structurally related (-)-kainic acid
3.13 This work had shown that the stereochemistry of the bicyclic
product7 of the cyclization was correct for the biologically active
kainoids,4 and that chemoselective Ru(VIII) oxidation of the aryl
ring and regioselective Baeyer-Villiger oxidation of the cyclo-
hexanone ring accomplished two of the key transformations required
for the conversion of7 into a target kainoid.

To employ this cyclization in the synthesis of isodomoic acid
C, we made amide5 from cumylamine14 4 on a 10-20 g scale and
cyclized it in 2.5 g batches. Treatment of5 in THF at-78 °C with
N-lithioamine615 by our published method13apromoted asymmetric
deprotonation and cyclization to an enol ether which was hydro-
lyzed16 in situ to yield enone7 (Scheme 1) in 86% ee (by HPLC).
Recrystallization of7 from ethyl acetate improved the enantiomeric
excess to>99%.

The reactivity of enone7 allowed us to introduce a precursor to
the required side chain of isodomoic acid C by conjugate addition

of a mixed cuprate formed from the protected iodo alcohol8,
yielding ketone9 in 79% yield as a single diastereoisomer. Although
inconsequential for the synthesis overall, we assume that9 forms
with the stereochemistry shown, by virtue ofexo attack of the
cuprate on the bicyclic system. Removal of the cumyl protecting
group with formic acid17 led additionally to desilylation and formyl-
ation of the primary hydroxyl group. Reprotection of the secondary
lactam as anN-Boc derivative yielded10 in 81% yield from9.

The benzyl group of5 is essential for clean cyclization; few
alternative cyclizing groups are as effective.13b However, the
resulting phenyl substituent requires conversion to the C2 carboxyl
group of the target, and the vigorously oxidizing conditions required
for such a reaction18 leave little room for manoeuvre chemo-
selectively. Ketone10 is one of few compounds in the synthetic
sequence in which chemoselective oxidation of Ph is feasible, and
treatment of10 with sodium periodate in the presence of catalytic
ruthenium(III) chloride yielded, after methylation with trimethyl-
silyldiazomethane, ester11. Reprotection of the primary hydroxyl
group with TBDPS gave12.

The way was now clear for cleavage of the six-membered ring
of 12, whosecis fusion with the lactam ring will generate the
necessarysynrelationship between the C3 and C4 substituents of
isodomoic acid C. Following the precedent13 that similar 6,5-fused
systems undergo surprisingly regioselective Baeyer-Villiger oxida-
tion,19 we treated ketone12 with m-CPBA. As we had hoped,
lactone 13 was formed quantitatively as a single regioisomer.
Careful methanolysis of lactone13 by slow addition of sodium
methoxide avoided epimerization of the hard-earnedcis stereo-
chemistry and returned the hydroxyester14 as the C3,C4-cis
stereoisomer.

Elimination of water from14 to give the unsaturated compound
15 was achieved via oxidation of the corresponding selenide using
the method of Grieco.20 Despite the presence of four carbonyl
groups in15, we found that the slow addition of DIBAL to15 in
THF allowed the selective reduction of the amide carbonyl group,
and treatment of the product with triethylsilane and boron trifluoride
gave theN-Boc pyrrolidine16.

Elaboration to the isodomoic acid C side chain was achieved by
fluoride-promoted deprotection of the silylated hydroxyl group,
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Scheme 1. Asymmetric Dearomatizing Cyclizationa

a Reagents: (i)p-MeOC6H4COCl, Et3N, CH2Cl2, 0 °C; (ii) NaH, DMF,
BnBr; (iii) 6, THF, -78 to 20°C; (iv) HCl, H2O; (v) recryst (EtOAc).
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Dess-Martin21 oxidation to aldehyde17, and Horner-Wadsworth-
Emmons olefination. Under Masamune’s conditions,22 17 reacted
with ethyl 2-triethylphosphonopropionate18 to yield a single
stereoisomer of the trisubstituted alkene19. Deprotection by
treatment with lithium hydroxide followed by trifluoroacetic acid
yielded, after purification by ion exchange and reverse-phase HPLC,
the target natural product (-)-isodomoic acid C1, [R]20

D ) -30
( 10 (c ) 0.02, H2O) [lit.1 [R]20

D ) -30 (c ) 0.015, H2O)].
Comparison of the1H and 13C NMR spectra of the product with
those of authentic naturally derived isodomoic acid C23 indicated
an exact match.
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Scheme 2. Synthesis of (-)-Isodomoic Acid Ca

a Reagents: (i)t-BuLi, -78 °C, Et2O; (ii) MeLi, CuCN, Et2O, -78 to
25 °C; (iii) 7, -78 °C; (iv) HCO2H, reflux, 30 min; (v) Boc2O, Et3N,
DMAP, CH2Cl2, 25 °C, 18 h; (vi) NaIO4, RuCl3, H2O, MeCN, EtOAc, 18
h; (vii) Me3SiCHN2, toluene, MeOH, 20°C, 5 min; (viii) NaOMe, MeOH,
-78 °C, 1 h; (ix) t-BuPh2SiCl, imid, CH2Cl2, 20 °C, 18 h; (x)m-CPBA
(70%), CH2Cl2, 25 °C, 72 h; (xi)o-NO2C6H4SeCN, Bu3P, THF, 20°C, 2
h; (xii) H2O2, py, -40 to 25°C, 12 h; (xiii) i-Bu2AlH, PhMe, THF,-78
°C, 1 h; (xiv) Et3SiH, BF3/OEt2, -78 °C, 2.5 h; (xv) Bu4NF, THF, 25°C,
2 h; (xvi) Dess-Martin, CH2Cl2, 25 °C, 30 min; (xvii) 18, DBU, LiCl,
MeCN, 25°C, 1 h; (xviii) LiOH, H2O, THF, 25°C, 12 h; (xix) CF3CO2H,
CH2Cl2, ∆, 2 h.
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